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The fluid mechanics of the closure motion of a short collapsible tube segment, subject 
to a strong flow deceleration as in one of Henderson & Johnson’s (1912) experiments, 
is investigated experimentally and theoretically. Physical similarity to the closure 
process of the mitral valve is obtained, In the study particular emphasis is placed upon 
the evolution of the longitudinal profiles of the collapsible tube during its closure 
motion. It is found that the flexible tube first closes near its upstream end and that 
this first phase is followed by a propagation process toward the downstream end. The 
characteristics of this typical sequence and of the longitudinal shape of the collapsible 
tube are related to hydrodynamic parameters. The results predicted by the theory 
agree consistently with those obtained from the experiments. 

1. Introduction 
In  the past, many explanations of the mitral-valve closure mechanism have been 

presented. Most of the recent interpretations have been based on the hypothesis that 
the valves are essentially dependent upon fluid-dynamic processes. 

It was Leonard0 da Vinci (1513) who first suggested a hydrodynamical mechanism 
for the closure of the heart valves. Leonardo’sinterpretation indicated that the valves 
could be closed by means of the vortical flow field, which is present in the ventricle 
during diastole and in the aortic sinus during systole. This concept was re-examined 
and analysed both mathematically and experimentally by Bellhouse & Talbot (1969) 
and Bellhouse (1972) and nowadays this type of explanation of heart valve closure is 
much debated. 

Yellin et al. (1976) made the remark that the order of magnitude of the maximal 
filling velocity does not allow the intraventricular fluid to achieve a complete re- 
circulation process inside the ventricular cavity, at least not during the first phase of 
diastole (rapid filling phase). This concept contrasts with the assumption that the 
recirculation ring plays the main role in mitral-valve closure. 

The mitral valve is indeed partially closed after deceleration of the fluid, which 
takes place at the end of the first phase of diastolic filling, in spite of the supposed 
absence of any vortical field. 

However, the arguments concerning the sequence of vortex ring generation during 
diastole are not entirely conclusive. This was shown in both numerical (Oddou et al. 
1979) and in vivo experimental studies (Brun et al. 1980), which demonstrated that 
slight vortical recirculation appears very early during the first diastolic phase, and 
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then grows and persists throughout diastole. Their presence could thus allow them to 
play an important role in the dynamics of the valves. Can this be considered an 
adequate reason for accepting the vortex interpretation of heart valve closure? 

Two recent experimental hydromechanical models have yielded opposite conclu- 
sions concerning this. The experiments reported by Bellhouse (1972) showed that the 
increase in ventricle volume, which induces a decrease in vortex strength, also implies 
delayed mitral-valve closure and an increased amount of regurgitated flow. It was 
concluded that the eddies which develop in the left ventricle before mitral-valve 
closure play an essential role in subsequent mitral-valve closure. Recent experiments 
carried out by Reul & Talukder (1979) showed, however, that the decrease in vortex 
strength around the valve does not influence its closure motion. 

This divergence is readily explained if we notice with Lee & Talbot (1979) that in 
Bellhouse’s experiments flow deceleration through the valve was consistently lower 
than in physiological cases. In  Reul & Talukder’s experiments, in contrast, the 
hydrodynamic data agreed closely with the physiological data. 

As was noticed by Bitbol et al. (1979) and Bitbol (1980), this divergence may also 
be expressed by the evaluation of a Strouhal number associated with the deceleration 
phase: S = L/Um,,TD, L being the length of the valve leaflet, Urn,, the maximal 
velocity reached by the fluid through the mitral ring, and To the time required by 
the fluid to decelerate from Urn,, to zero. In  Bellhouse’s experiments, S was equal to 
0.1 whereas in the experiments of Lee & Talbot and Reul & Talukder S 21 1, which is 
a characteristic value of physiological conditions. 

This essential difference between the values of the Strouhd number does not 
appear any longer if, like most physiologists, one uses the period of the cardiac cycle 
instead of the duration of deceleration, to define the Strouhal number. Its value is, in 
this case, always close to 0.03. 

The meaning of the Strouhal-number characteristic of the deceleration phase 
underlines the importance of this difference. S = L/U,,, To can be interpreted as the 
ratio between the valve length and the maximal distance covered by the fluid during 
the deceleration period. When S < 1, most of the hydrodynamic phenomena occurring 
during the deceleration phase, especially those related to the closure of the valve, 
take place inside the overall ventricular cavity, whereas when S 2 1 these phenomena 
take place mainly in close vicinity of the valve. 

The Strouhal number can also be considered as a ratio between the unsteady 
inertial effects and the convective inertial effects, in the equation of motion: 
S = (Umax/TD)/(U&,JL). When S 2 1, as in the physiological case, the effects 
induced by flow deceleration through the mitral orifice are dominant. 

This discussion, together with recent advances made toward a better understanding 
of mitral-valve dynamics, highlight the importance of the pioneering work carried 
out by Henderson & Johnson in 1912. 

Such experiments clearly demonstrated the fact that the fast deceleration of a jet 
flow is sufficient to induce the closure of a piece of collapsible tube considered as a 
mitral-valve model. It is to be noticed that this process did not require any vortical 
recirculating flow, since Henderson & Johnson immersed their collapsible tube in a 
very large tank. These qualitative experimental results, interpreted thoroughly by 
Henderson & Johnson in terms of ‘breaking of a jet ’, have been used by most of the 
researchers who have recently worked on this subject as an illustration of a closure 
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mechanism dominated by pressure gradients induced by atrio-ventricular fluid 
deceleration. 

A complete physical analysis of the same type of hydromechanical model as the 
one already used by Henderson Q Johnson thus appeared to be necessary. Moreover, 
few investigators have until now approached the subject of the evolution of the 
longitudinal profile of the valve leaflet during the cardiac cycle. Some of them were 
interested in the theoretical study of this profile during the opening phase: in this 
case the behaviour of the valvular leaflet may be represented as a set of Lagrangian 
neutrally buoyant particles linked to each other. Gillani (1974), Gillani Q Swanson 
(1976) and Oddou et al. (1979) carried out numerical studies of this type, the former 
with an aortic-valve model, and the latter with a mitral-valve model. One should also 
take into account Peskin’s numerical model (1977) which enabled him to explore the 
shape of a model of the valve leaflets, in two-dimensional geometry, throughout 
all the phases of the cardiac cycle. Nevertheless, the restriction of this model to values 
of Reynolds number which are much smaller than those encountered in the 
physiological case, did not enable Peskin to account satisfactorily for the important 
inertia-dominated effects. 

Our knowledge concerning mitral-valve profiles would probably be very useful for 
clinical applications if new echocardiographic methods (Vogel et al. 1978, 1979; Brun 
et al. 1977, 1980), which have made possible real-time imaging of the entire valvular 
cusp, were widely used. 

For all these reasons, we present in what follows a hydrodynamic analysis, both 
theoretical and experimental, of a simple mitral-valve model very similar to Henderson 
Q Johnson’s. Its focal point is a study of the longitudinal profile of the flexible tube 
which is considered to be a mitral-valve model. This longitudinal shape is correlated 
with hydrodynamic parameters. 

2. Experiments 
A mechanical model bearing physical similarity to the dynamics of mitral valve 

closure was used in our experimental investigations, which are reported in detail by 
Bitbol(l980). 

The experimental device is illustrated in figure 1. It consisted of a cubic tank, filled 
with water, made of Plexiglas (each of its sides is 30 cm long); a rigid vertical tube 
made of Plexiglas of internal radius 0.8 cm with its lower end a distance 1 below the 
water level in the tank (5 cm < 1 < 10 cm); a piece of flexible tube made of silicone 
rubber of length L such that 5 cm < L Q 10 om. The tube’s radius at rest (or when 
unconstrained) was R’ = 1.03 cm (defined as the unconstrained perimeter divided by 
2n); it had a Young’s modulus of approximately: E 2~ 2 x 106 N m-4, and its thickness 
was h, = 5 x 

The water level was raised within the rigid tube to the height Yo (5  cm < Yo < 30 cm) 
and maintained at that height by closing an electromagnetic gate. The gate was then 
opened, allowing the water column to fall. The process of the fall of the water column 
was divided into two phases: firstly, an acceleration phase, up to the instant when the 
water level in the rigid tube had reached that of the tank; secondly, a deceleration 
phase from the moment when the two water levels became equal. The closure of the 
collapsible tube takes place during the deceleration phase. 

cm. It was fastened to the lower end of the rigid tube. 

7-2 
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FIQUFZE 1. Hydromechanical model and measuring device. 

Some dimensionless numbers characteristic of our experimental conditions may 
be evaluated. The average Reynolds number, which is defined by Re = ER'/v, where 
ii is the time-averaged velocity of the water column, is included within the interval 
[ 1600, 40001. 

The Strouhal deceleration number S = L/U,,,T, is included within the interval 
[0.5, 21. 

Finally the frequency parameter a = R'/(vT))  is included within [15, 301; T is a 
characteristic period of the fall (T = (Z/g)t). We must stress here the fact that these 
values are close to those of haemodynamic data. 

The pressure within the rigid tube was measured a t  a distance d = 0.6 cm above 
its lower end. A Gould-Statham P23 ID pressure transducer was used; the measure- 
ments were monitored on an Intertechnique-Plurimat S computer. Longitudinal 
velocity memurements were carried out on the axis of the rigid tube by means of a 
directional Iaser-Doppler velocimeter in the dual beam, forward-scatter mode (DISA). 
I n  addition, films were made using rapid cinematography (1000 images s-l), allowing 
us to observe the closure of the collapsible tube in its collapsing plane or in a slightly 
oblique plane (figure 2). 

The apparent instantaneous diameters of the collapsible tube were measured 
during closure. The image of the flexible tube was projected on to a screen made of 
graph paper, by means of a film analysis projector. The measurements were taken at  
ten equidistant points along the longitudinal co-ordinate, and each 6 ma apart. 

These apparent diameters were related to the areas of the horizontal cross-sections 
of the collapsible tube. This relationship was found from the results of another experi- 
ment shown in figure 3: the device (1) consists of a U-tube on which a vertical 
collapsible tube is fastened. This collapsible tube is filled with air and plugged at its 
upper end. Its length is e = 1.05 m. The U-tube is filled with water and a tap controls 
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FIGURE 2. Horizontal cross-sections of the collapsible tube for different times of the closure 
process (from Ribreau & Bonis 1978). Two filming angles are symbolized by arrows. 

the variation of the heights h and h'. For given values of h and k', the apparent 
diameter of the collapsible tube is measured in its collapsing plane (3). At zero trans- 
mural pressure, when h = h', the area of the collapsible tube horizontal cross-section 
which has an elliptical shape is approximately determined by A: = na(Pk/2n2 - a2)*, 

where 2a is the length of the small axis of the ellipse (or in other words its apparent 
diameter), and P,,, is the perimeter of the unconstrained tube. From A,", the areas in 
other states may be obtained by A' = A," + AA', where AA' = m2 Ah/e (Ah being 
the variation of h). This simple formula does not account for the contribution of the 
collapsible tube entry zones to variations in air volume. But this contribution is small 
since the vertical height of these entry zones is less than 4 % of e. Moreover, in our 
experimental range, h - h' < 2 cm and this means that there is very little difference 
between the pressure inside the collapsible tube and atmospheric pressure. Therefore 
volume variations related to the compressibility of air are negligible when compared 
with those related to the capacity of the collapsible tube. The results of these 
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FIGURE 3. Diagram of the experiment making it possible to obtain a relationship between the 
cross-sectional area of the collapsible tube and its apparent diameter. The results of these 
measurements are plotted in figure 4. 

FIGURE 4. Result of the experiment shown in figure 3 (cross-sectional area versus apparent 
diameter). a = A'/TR'~. The two upper points are computed assuming that, at low positive 
transmural pressure, the horizontal cross-section of the collapsible tube changes from a circular 
shape (radius R') to a slightly elliptical, unconstrained shape. The two lower points are com- 
puted assuming that, at high negative trammural pressures, the collapsible tube ie simply 
opened by two small circular cylinders. The other points are measured ones. The curve is a 
fifth-degree polynomial fitting the data. 
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measurements, concerning cross-sectional area versus apparent diameter, are plotted 
in figure 4. 

The changes in slope of the curve area versus apparent diameter correspond to 
precise events (figure 2) : (i) the transition, in cross-section, from elliptical shape to a 
two-lobed shape; (ii) the onset of line contact between the opposite sides of the tube 
wall (curve 5 in figure 2). 

The relative inaccuracy which resulted from the measurements of the horizontal 
section areas of the collapsible tube was about 7 %. 

3. Theory 
3.1. Fluid motion in  the rigid tube, without any flexible tube 

fastened to its lower end 

The value for the frequency parameter, a, is about 20 in the experimental conditions 
of the present model. Thus, the velocity profile in the rigid tube can be considered to 
be approximately blunt. 

Conservation of mass in the tank yields 

where A, is the area of the horizontal cross-section of the rigid tube, A, the area of the 
horizontal cross-section of the tank, V, the fluid cross-section-averaged velocity inside 
the rigid tube, V, the velocity of the free surface of water in the task (figure 5) .  

We can also assume that the submersion length, I ,  of the rigid tube under the water 
level in the tank is a constant, this level being approximately constant. Indeed, in the 
hydromechanical model in which A, Q A, ( A ,  N 10-aA,), AZ/Z is always smaller 
than 

It is possible to compute the cross-section-averaged velocity of the fluid column 
inside the rigid tube during its fall, if the pressure P, of the fluid within the tank, and 
the pressure Po at the lower end of the rigid tube are known and related. However 
it is not correct in this cme merely to use Bernouilli’s equation. 

We can, however, notice that (i) a t  high Reynolds number, due to the boundery- 
layer separation, there is no curvature of the jet streamlines past the tube; (ii) in a 
tank where A,/A,  Q 1, the average velocity of the fluid is very small compared with 
the velocity of the jet, and, moreover, the dynamic head of the jet is dissipated in this 
tank. The inertial effects in the tank are therefore negligible when compared with the 
hydrostatic effects. 

Two assumptions may then be put forward. 
(1) The pressure Po at the lower end of the rigid tube is approximately equal to the 

pressure in the tank at the same level: 

Po N PC(Z). (2) 

(2) The pressure in the tank is simply determined by the hydrostatic effect: 

Moreover, to obtain an expression for Po, we used Bernouilli’s equation for unsteady 
flow, and applied it to the fluid motion in the rigid tube. We also took the V~SCOUS 
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FIQURE 5. 1 Schematic diagram of the tank and the rigid tube. 

friction force in the rigid tube to be fR = 40nvpq(l+y) .  This term is proportional to 
the cross-section-averaged velocity in the rigid tube and 5 times as great as the one 
corresponding to the case of a Poiseuille flow profile for the same average velocity. Of 
course, this last choice is a rough estimate : it should include a proper phase relationship 
to the velocity. However, at  such high Reynolds numbers, the viscous effects cause 
only a small disturbance, and the expression for fR is a reasonable approximation. 

The expression obtained is 

combining this equation with (2) and (3), we finally obtain 

This equation, together with dyldt = V,, was solved by using a fourth-order Runge- 
Kutta method using dimensionless variables : 

40nvT 
Y = y/l, 2 = V,/Uo, Uo = (Zg)) = ZIT, 7 = t /T ,  T = (Z/g)t, Re'-l = -. 

A0 
The dimensionless initial height of the water in the rigid tube is Y0/L 
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Equation (8) then becomes 

dZ d Y  
( l + Y ) - + Y + + e ' - l ( l + Y ) Z = O  with Z = -  

dT dT * 

To compute the velocity on the axis of the tube, in an inertia-dominated zone, it is 
assumed that the same equation can be used, but without any resistive term. 

3.2. Fluid motion in the rigid tube when a collapsible tube 
is  fastened to its lower end 

In  this section, we shall try to solve in a simple way the problem of the influence of 
the short collapsible tube on fluid motion within the rigid tube. 

During the acceleration phase, one should consider the flexible tube behaviour as 
that of a segment of a rigid tube whose radial and longitudinal dimensions are 
approximately the same as those of this flexible tube when unconstrained. Indeed, 
the flexible tube is only inflated very slightly even under the highest transmural 
pressures reached in the present experimental conditions, which are never higher than 
a few millibars. 

During the deceleration phase of the fluid, from the moment when the water level 
of the rigid tube coincides with that of the tank, the properties of the flexible tube are 
more difficult to account for, since it is in a collapsing phase. 

We nevertheless found that, during this phase, we can physically separate this 
segment of flexible tube into two zones. The first one is an entry zone, the behaviour 
of which is strongly determined by being fastened to the lower end of the rigid tube 
(figure 6 b ) .  

On the other hand, the second zone is much less constrained and behaves approxi- 
mately like a collapsible tube uninfluenced by the rigid tube. The difference between 
the outer and the inner pressure is then expressed by Shapiro's (1977) similitude law: 

AP - M-yU.-Q- 1). pvg - (7) 

where 

K p  = &E(h,/R')S and A; is the areaof some horizontal cross-section of the second zone 
of the collapsible tube. In the present case, M-2 2: 10-2. Thus, AP Q pug for a2 close 
to 1. (It should be pointed out that, using the similarity law which is usually valid in 
a quasi-static case, during the process of fast closure of a collapsible tube, we assume 
that inertia and viscosity of the wall of the flexible tube are negligible.) 

This set of arguments led us to think that the effect of the piece of flexible tube on 
the motion of the water column in the rigid tube might be represented by an equivalent 
rigid-tube segment. The length of this equivalent rigid tube is AL, with A = 1 during 
the acceleration phase, and A < 1 during the deceleration phase (figure 6a) .  Although 
this parameter A is physically related to the length of the entry zone of the collapsible 
tube, it must be determined independently, by experimentation. Moreover, the value 
of the cross-sectional area A ;  of this equivalent rigid tube must also be determined 
experimentally, though we assume it is close to the unconstrained cross-sectional 
area of the collapsible tubc. We shall now consider the motion of the fluid past the 
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FIQTJRE 6. (a) Representation of the influence of the collapsible tube upon the upatreem flow, 
by an equivalent rigid tube segment. (b)  Diagram of the two zones of the collep&ble tube. 

sudden enlargement between A,, and A;. Conservation of momentum in the equivalent 
rigid tube (Batchelor 1967) yields 

PA= P 0 + p A L ( g + ~ ) + ~ ~ u A L + p V ~ ~  A0 A A0 ( 1 -2), 
where Pi is the pressure at  the lower end of the equivalent rigid-tube segment (Po is 
still the pressure at  the lower end of the rigid tube) and u is the cross-section averaged 
velocity of the fluid in the equivalent rigid-tube segment. 

Conservation of mass waa also taken into account, 

and, if we follow the same reasoning as that leading to equations (2) and (3), weobtain 

(10) P; = Patrn + p(2 + AL) g .  

Combining equations (a), (8) ,  (9) and (10) and using slightly different dimensionless 
variables (I is replaced by L at3 the fundamental length) we obtain 

(;+ Y +$A) g + Y 
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in which 

where 

This equation was solved like equation (7), using a fourth-order Runge-Kutta method. 
The value of A is 1 during the acceleration phase, so it is initially taken to be 1. 

When the sign of dZ/d7 changes, the value of A is also changed. 
Equation (1 1) is also used, but without any resistive term, to compute the velocity 

on the axis of the tube. 

3.3. Pressure in the rigid tube 

Using Bernouilli’s equation of unsteady flow, we obtain: 

P - p ,  

where P is the pressure inside the rigid tube at  a height d above its lower end and P, 
the pressure within the tank at  the same level. This equation is obtained assuming that 
no flexible tube is fastened to the rigid tube. When a flexible tube is fastened to the 
lower end of the rigid tube, we can derive another equation: 

P-P,  -= ( ; + Y - L ) ( ; i ; + m ) + Y ,  d dZ z 
Pu: 

where Z is the solution of equation (6) in (12), and of (11) in (13). 

3.4. Motion of the wlhpsible tube 
The geometrical symmetry of the collapsible tube and the mitral valve during the 
closure process, is predominantly planar. Therefore, in order to describe the closure 
of the two zones of the flexible tube, we used two-dimensional geometry in the 
theoretical model. The fluid motion waa described by quasi-one-dimensional equations 
and we also assumed that the vertical height L of the collapsible tube waa constant. 

The assumption of quasi-one-dimensionality of the fluid motion is valid only if 
R’/L 4 1. In our experimental case 0.1 d R / L  < 0.2. These values were chosen 
because they are small enough to assume quasi-one-dimensionality, while they are 
not too different from the physiological data. Indeed the ratio of the radial displace- 
ment of the anterior mitral leaflet and its longitudinal dimension can be easily deter- 
mined by taking into account the elliptical shape of the mitral ring: it is about 0.3 
(this was estimated using Yacoub’s (1976) anatomical data). 

(a)  First zone of the collapsible tube 

derived from that of Van Steenhoven & Van Dongen (1979). 

constant vertical height 6 (figure 6b). 

As regards the motion of the first zone of the flexible tube we used a theoretical model 

This first zone is assumed to be made of two flat, rigid and inertialess cusps of 
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The continuity equation then yields 

where a, = A;/A;; A: is the cross-sectional area at the lower end of the first zone of 
the collapsible tube. U ( z , t )  is the velocity of the fluid within this first zone, at a 
height x and time t .  

It should be noted that U(0, t )  = - u, because u is the projection of the fluid velocity 
onto the Oy axis, while U(0,  t )  is the projection of the same velocity on the O’x axis. 
These two axes are in opposite directions (see figures 6a, b). Furthermore, we assumed 
that, during most of the closure process of the first zone, ( 1  - al) 4 1 and 
xa6-l dal/dt 4 u. These assumptions are confirmed experimentally and numerically, 
since the initial value of the function of time a1 is 1 and its successive derivatives are 
initially close to 0. 

Bernouilli’s equation of unsteady flow, applied to the fluid within the first zone, 
yields 

(15 )  
P;(z, t)  = P o + ~ ~ ” - L u 2 ( x , t ) - p ~ i S o  a s  U(z’,t)dx’+pgx. 

Let us assume that the interior pressure at the lower end of the first zone is the same 
as the interior pressure it the upper end of the second zone (i.e. Pi(&, t )  = Pi(6, t ) ) .  

According to equation ( 7 ) ,  we know that the difference between the inner and the 
outer fluid pressures a t  a height x of the second zone may be written as 

Since q ( t )  = a2(6, t )  it is also possible to write 

As haa been pointed out, the pressure in the tank at  a height x is simply 

P,(4 = P,(4 - P9(8 - 4. ( 1 7 )  

The equilibrium of the moments along one of the rigid cusps which constitute the 
first zone yields 

From equations (16), (17 )  and (18)  we then obtain 

The term P;(x, t )  is calculated from equations ( 1 4 )  and (15 )  and, making the assump- 
tion that terms of order ( l -a l )2  and [(x2/u8)dal/dt]a are negligible, we obtain a 
differential equation, directly written in dimensionless variables, 
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In  the same way, when the terms of order 2,  ( 1  - al)2 and [ (x2/u8) da,/dt]2, are taken 
into account and the terms of order 3 are neglected, we come to an equation with a 
better approximation : 

Then, from a1 it is possible to derive the velocity of the fluid a t  the lower end of the 
first zone of the collapsible tube: - 

In  the above equations 

Equations (20)  and (21)  were numerically solved (using a fourth-order Runge-Kutta 
method) taking the origin of time to be the instant which separates the acceleration 
phase from the deceleration phase of the fluid column within the rigid tube. In equa- 
tions (20)  and ( 2 1 )  8(7) is a known function which is the solution of equation (11). 
This computation stops when Z(7) = 0, i.e. when 7 = 7,. The length 8 (and thus the 
parameter e) is determined experimentally, as being the length between the lower 
end of the rigid tube and the point where the collapsible tube cross-sectional area is 
minimal. 

(b)  Second zone of the collapsible tube 
We assume that the second zone is made of two flexible, inertialess, and two-dimen- 

sional leaflets. Furthermore we assume that these leaflets are not submitted to  any 
longitudinal stress and that their vertical height, L - 8, is constant. 

The quasi-one-dimensional equations of motion can be written, with dimensionless 
variables, as follows: 

where 

Alsopc-p, = M-2(a;#-  1) .  Therefore the first equation (23)  becomes 

The second equation (23)  and equation ( 2 4 )  were simultaneously solved by a finite- 
difference method. To be more precise the numerical method is based upon an upwind, 
one-step, explicit, two-time level differencing scheme (Roache 1972). 

The initial conditions for the integration of those equations are the following: 

a2(X,7J = 1 ,  %(x,71) = -Z(7 , )A0/A6,  (26) 
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FIGURE 7. Fluid velocity upon the axis of the rigid tube, for several values of y0/L In this C B B ~  
there is not any collapsible tube fastened to its lower end. -, 0, Yo/Z = 0.6; ---, 0,  
Yo/l = 1; ---, A, Yo/l = 2; ---, ., Yo/l = 3. The curves are computed and the 
points represent measurements. 

where T~ is still the instant which separates the acceleration phase from the decelera- 
tion phase. Equations (25) indicate that, a t  the initial instant 7 1 ,  the second zone is 
uniformly open and that the velocity of the fluid within it is uniform and equal to the 
entry velocity. The boundary conditions are continuity conditions between the lower 
end of the first zone and the upper end of the second zone: 

4. Results 
4.1. Velocity and pressure within the rigid tube without any Jexible tube 

being fastened to its lower end 

The velocity of the fluid within the rigid tube (on its axis) is theoretically determined 
and compared with the corresponding experimental data. Figure 7 shows velocity 
curves as a function of time, for several initial heights of the water level within the 
rigid tube Yo. This initial height is expressed by means of a dimensionless number, 
Yo/l. The instant T = 0 coincides experimentally with the opening of the electro- 
magnetic gate. 

Figure 8 shows a computed pressure curve and the corresponding measurement 
data. One can see from this figure that the pressure difference between the fluid 
within the rigid tube and the fluid within the tank, at  a height d above the lower end 
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of the rigid tube, is slightly positive before 7 = T ~ ,  while i t  becomes strongly negative 
from 7 = T~ to 7 = T ~ .  

The oscillations of the pressure measured when 7 is close to 0 are due to the vibra- 
tions of the solid support used to hold the hydromechanical model. Apart from this 
slight problem, there is good agreement between computed and measured data. 

4.2. Velocity and pressure within the rigid tube when ajbxible tube 
is fmtened to its lower end 

The shape of the pressure-time curves computed by equation (13) is strongly 
dependent on the values of A. So, h may be experimentally established by comparing 
these computed curves with the measured points. Figure 9 first shows that the 
assumption according to which h = 1 during the acceleration phase of the fluid is 
verified by the experimental data when y is equal to 0.2 f 0.01, which corresponds 
to A,/A; = 0.72 f 0.025. 

During the deceleration phase, some segments of the computed pressure curves are 
plotted, corresponding to several values of A.  The best fitting between the computed 
curve and the measured points is obtained when h = 0.6, in this caae where R / L  = 0.1 
and l /L  = 1. Likewise h = 0.9 for 1/L = 2 and R / L  = 0.2. Therefore, the aseump- 
tion, according to which the effect of the collapsible tube on the upstream fluid 
motion can be compared to that of an equivalent rigid tube segment of length AL, 
becomes experimentally likely. 

Figure 10 shows other pressure curves for two values of Yo. The pressure difference 
between the fluid within the rigid tube and the fluid within the tank is again measured 
at a height d above the lower end of the rigid tube. As in the previous case, a collapsible 
tube is fastened at the end of the rigid tube. 

FIGURE 8. Pressure in the rigid tube when there is not a collapsible tube fastened to its lower 
end. d / l  = 0.1. Y,/1 = 4. - - -, computed; W, meaeured points. 
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FIGURE 9. Measured points of pressure in the rigid tube, when a collapsible tube is fastened to 
its lower end. y = 0.21, d / L  = 0.05, R'IL = 0.1, Y , / L  = 1, 1/L = 1.  The curves were com- 
puted from equations ( 1  1) and (13), assuming that A = 1 during the acceleration phase, and for 
several values of h during the deceleration phase: ......, h = 0; -- -, h = 0.2; - - - - - -. 
A = 0.4; -, A = 0.6; - --, A = 0.8; ---, = 1. 

Figure 11 shows several velocity-time curves, for different values of Y,/L. The 
velocity is measured on the axis of the rigid tube, when a collapsible tube is fastened 
at its end. The good agreement between the theoretical curve and the measurements 
again shows that our assumptions about the effect of the collapsible tube upon the 
upstream fluid dynamics are a good framework for the interpretation of such 
phenomena. 

4.3. Collapsible tube opening area 

Figure 12(a, b )  shows the dimensionless area, a,, of the lower end of the first zone of 
the collapsible tube as a function of dimensionless time 7,  the instant T~ here being 
taken as the origin of time. The computed curves (equation (21)) are compared with 
the opening-area measurements (i.e. the observed minimum area). It can be seen that 
the closure of the collapsible tube is delayed in comparison with the onset of fluid 
deceleration. Otherwise, there is a good agreement between computed and measured 
data during the first phase of closure, when a, remains very close to 1. On the other 
hand, the computed curves move progressively away from the measured points 
during the last phase of closure. 

The assumptions that (1 -a1) 4 1 and (x2/u8)da,/dt < 1 might at least partly 
explain this progressive divergence. Some other neglected terms, such as longitudinal 
tension of the tube due to the frictional forces exerted on its wall, may also be of some 
importance in the late stages of the closure process. The computation was stopped at 
the instant r2 when the fluid velocity within the rigid tube became equal to zero. It 
was noticed that, experimentally as well as theoretically, closure of the collapsible 
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FIGURE 10. Pressure in the rigid tube (when a collapsible tube is fastened to its lower end) for 
two values of YoIL. R'IL = 0.2, d l L  = 0.1, h = 0.9, l / L  = 2. (a) y = 0.2, Yo/L = 1. 
( b )  y = 0.21, YoIL = 3. -, computed; A, mewured. 

tube is not completed at  this instant. This means that a small amount of regurgitated 
fluid is necessary to complete the closure, as was already pointed out by Bellhouse 
(1972) and Lee & Talbot (1979) in their models. Figure 12 also shows polynomials 
fitting the experimental data, in addition to the theoretical curves. These polynomials 
allowed us to use, as a boundary condition a t  the upper end of the second zone of the 
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FIGITRE 11. Fluid velocity on the axis of the rigid tube for some values of Yo/L.  In thia case, a 
collapsible tube is fastened to its lower end. y = 0.2, l / L  = 2, R'/L = 0.2, h = 0.9. 
--- , 0, Y, /L  = 1; -, V. Yo/L = 2; ---, D, Y,/L = 3. The curves are com- 
puted and the points represent measurements. 

collapsible tube (ag(e,7)  = a1(7)), a function d1(7), which agrees closely with the 
measurements. The function u ~ ( T ) ,  used as a boundary condition at  the upper end of 
this second zone, is computed by the equation (22), in which a1(7) is the function 
which agrees with the measurements, and Z(7) is the solution of equation (1 1) until 
the instant7,. For T > T ~ ,  Z(T)  = 0. After closure, the collapsible tube reopens, and this 
reopening process, which is not studied here, is much slower than the closure process. 

4.4. Collapsible tube profiles 
Figure 13(a, b )  shows the collapsible tube longitudinal profiles at different times 
during the closure process. There is good agreement between the experimental data 
and the computed curves. One can see that the assumption according to which the 
collapsible tube may be separated into two physical zones seems to be justified 
experimentally. During the main part of the closure process, the vertical height of the 
first zone is constant as was assumed previously. However, from figure 13 (a) i t  is clear 
that at  the end of the closure process the vertical height of the entry zone is con- 
siderably shortened. This last fact may be related to some features of the phenomena 
which were neglected in our theoretical description. In particular, we did not take 
into account the longitudinal tension generated by the viscous friction of the fluid on 
the wall of the collapsible tube. 

The fluid velocity inside the collapsible tube decreases dramatically or is even 
reversed at the end of the closure process; thus longitudinal tension decreases and 
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FIGURE 12. Cross-sectional m a  of the lower end of the firat zone of the collapsible tube e~ a 
functionoftime. (a )y  = 0*2,,?/L = 1, R’IL = 0.1,h = 0.6, Y o / L  = 1.5,s = 0.35. (b)  y = 0.2. 
1/L = 2,  R‘/L = 0.2, h = 0.9, Y, /L  = 3, E = 0.5. a, measured; - , theoretical; ---, 
polynomial. 
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FIGURE 13. Collapsible tube longitudinal profiles at different times. The two zones are plotted. 
(a )  y = 0.2, l / L  = 1, R'IL = 0.1, h = 0.6, Y , / L  = 1.5, E = 0.35. ( b )  y = 0.2, 1/L = 2 ,  
R'/L = 0.2,  A = 0.9, Y, /L  = 3, E = 0.5. The a-scale in ( b )  is doubled with respect to (a)  in 
order to show that in this case R'IL = 0.2, whereas iri (a)  R'IL = 0.1. 0,  measured; -, 
computed. 
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this might facilitate the process of the entry zone collapse under the effect of trans- 
mural pressure. 

One should note that the closure process may be separated into two main phases. 
The first consists of the decrease of the area of the collapsible tube cross-section a t  
the junction between the two zones. The second is a propagation phase, since the 
closure which originates at  the upper end of the second zone of the collapsible tube is 
propagated along it, towards its lower end. This can also be observed on the photo- 
graphs of figure 14. We have found that the propagation velocity along the second 
zone of the collapsible tube is very close to the local velocity of the fluid itself. This 
last fact can easily be explained if one notices that, in equation (24), the terms of order 

and Re'-l are very small compared to 1. Therefore, equation (24) may be written 
approximately as au, au 

-+u+ = 0. 
a7 ax 

Indeed this type of equation has an analytical solution (Bellman, Cherry & Wing 
1958), which is 

It is therefore evident that the propagation velocity along the second zone of the 
collapsible tube is close to u2. 

To study the effect of the hydrodynamical parameters on the longitudinal shape of 
the collapsible tube theoretically, we also performed numerical computations using 
a simple time variation in the velocity at the upper end of the collapsible tube (entry 
velocity). 

~2 = f(z) with z = X - U ~ T .  

Let us assume a flow deceleration model of the following form: 

t 
T 

for -E[O, 0-251 

where S is the Strouhal deceleration number, S = L/U,,,TD, TO being here equal to 
4T; T = t /T .  

Figure 15 shows the theoretical longitudinal shape of the collapsible tube at the 
same moments, for two different values of S. When the value of S is large enough, the 
closure process is clearly divided into a f i s t  phase of closure motion at the junction 
of the two zones and a subsequent propagation phase. 

On the other hand, when the value of S is small, the two phases merge into a single 
one. Then the collapsible tube seems to close uniformly with a regular shape. 

This may be explained by noticing that, since the wave propagation velocity on 
the second zone of the collapsible tube is close to the local fluid velocity, U,,,T, is 
close to the wavelength. Therefore, S may be interpreted as the ratio between the 
collapsible tube length and the wavelength on it. If the value of S is a small one, the 
wavelength is much larger than the collapsible tube length and thus the flexible tube 
seems to close uniformly. On the contrary, when the value of S is close to 1, the wave- 
length is of order of the collapsible tube length. 

Such variations of the Strouhal number for the mitral orifice velocity, are probably 
orten reached in physiological or pathological situations, such as tachycardia, blood 
flow increase or decrease. 
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FIUURE 16. Computed collapsible tube longitudinal profiles at two Merent dimensionless ti&, 
for two valuea of the Strouhal deceleration number. 6 = 0.4, (a;) B = 0-3, (a) 8 = 1.2. 

5. Conclusion 
During this study, it has been demonstrated that a quasi-one-dimensional model, 

using very simple assumptions, is an adequate description for the collapsible tube 
closure process. 

It ww also possible to conclude that the leading mechanism for the collapsible tube 
closure is longitudinal flow deceleration. Similar observations were made from the 
models of Reul& Talukder and Lee & Talbot. 

In our cwe, it is especially important to notice that a complete closure of the flexible 
tube is achieved in a cwe where the convective terms in the cavity surrounding the 
collapsible tube are negligible. As wm suggested in the introduction, since in the 
physiological case r9 2 1, the convective terms within the cavity surrounding the 
mitral valve generally have little effect upon its closure motion, though, as has been 
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demonstrated by Pedley (1 980), they may account for the experimental fact that this 
closure begins before the onset of fluid deceleration (see Laniado & Yellin 1976). 

Moreover, the longitudinal shape of the collapsible tube was analysed and it was 
shown that, after a first phase of closure at the junction between the entry zone and 
the second zone, a propagation of the perturbed area and fluid velocity takes place in 
the downstream direction. 

The characteristics of this propagation were related to the hydrodynamical para- 
meters of the upstream flow, such as the Strouhal number. It was demonstrated 
experimentally that the vertical height of the entry zone is approximately constant 
during the main part of the closure process. Finally, arguments of physical simi- 
larity, based upon the estimation of a set of dimensionless numbers, allowed us to 
establish a close connection in the closure processes between the mitral valve and our 
Henderson- Johnson-type model. 

Therefore, it  is possible to extend the main features of the conclusions of the 
hydromechanical model to mitral-valve motion, especially the most specific aspect 
of this work: the longitudinal profiles of the collapsible tube. Our knowledge of the 
relationship between the haemodynamic parameters and the longitudinal profile of a. 
valve leaflet during the closure phase should be very useful in clinical applications, 
taking into account the recent advances in ultrasound imaging techniques. However, 
further studies remain to be carried out to specify the effect of pressure and flow fields 
within the ventricular cavity, as well as that of the longitudinal tension exerted by 
the chordae, upon mitral valve motion. 

The authors acknowledge the helpful suggestions of the referees. This work was 
supported by the D616gation GBn6rale B, la Recherche Scientifique et Technique, 
contract no. 7872590. 
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